Gas hydrate evaluation / Cyclostratigraphy

Alberto Malinverno

Well Logging Principles and Applications G9947 - Seminar in Marine Geophysics Spring 2008

Outline

- Introduction to gas hydrates
- Estimating gas hydrate abundance with downhole logs
 - Electrical resistivity
 - Acoustic
 - Nuclear magnetic resonance (NMR)
- Cyclostratigraphy with downhole logs

Fire and ice

Clathrate

(Chemistry) a compound in which molecules of one component are physically trapped within the crystal structure of another. ORIGIN 1940s: from L. clathratus, from clathri 'lattice-bars'.

Kvenvolden & Grantz, 1990

Gas hydrates are widespread

Figure 3. Gas hydrate deposits exist in about 100 separate locations throughout the world. For 20 of these sites (*white dots*), samples of hydrate have been recovered from the subsurface. For the others (*black dots*), the presence of hydrate is inferred from geophysical, geochemical or geologic evidence. (Courtesy of Keith Kvenvolden, U.S. Geological Survey.)

Kvenvolden & Lorenson, 2000

Figure 3. Photograph of a nearly pure piece of gas hydrate (Section 164-997A-42X-3; 331 mbsf) that is \sim 5 cm \times 14 cm in size, white colored, and coated by greenish gray drilling slurry. Note the bubbles within the slurry.

FIG. 1.1.1. Diagram showing several types of Rock Interstices. A. Well-sorted sedimentary deposit having high porosity; B. Poorly sorted sedimentary deposit having low porosity; C. Well-sorted sedimentary deposit consisting of pebbles that are themselves porous, so that the deposit as a whole has a very high porosity; D. Well-sorted sedimentary deposit whose porosity has been diminished by the deposition of mineral matter in the interstices; E. Rock rendered porous by solution; F. Rock rendered porous by fracturing. (After Meinzer, 1942.)

Material	Resitivity (Ω m at 18-20°C)
Pure Materials ^a	
Marble	$5 \times 10^{7} - 10^{9}$
Mica	$10^{11} - 10^{14}$
Quartz II	1×10^{12}
Quartz \perp	3×10^{14}
Slate	$1-2 imes 10^{6}$
Sulfur	10 ¹⁴ -10 ¹⁵ temperature unknow
Petroleum	2×10^{14} temperature unknown
Distilled water	$0.5 imes 10^4$
Salt Water at 15°C ^b (kppm NaCl)	
2	3.4
10	0.72
20	0.38
100	0.09
200	0.06
Typical Formations ^c	
Clay/shale	2-10
Saltwater sands	0.5-10
Oil sands	$5 - 10^3$
Compact limestone	10 ³
Dolomite	10 ³
Lignite	10 ²

TABLE III. Electrical Resistivities of Earth Materials

^a "Handbook of Chemistry and Physics," 38th Ed., pp. 2237-2238. Chemical Rubber Publishing Co., Cleveland, 1956.

^b R. Desbrandes, "Diagraphies dans les Sondages," p. 124. Éditions Technip, Paris, France, 1982.

^c R. Desbrandes, "Théorie et Interprétation des Diagraphies," p. 8. Éditions Technip, Paris, France, 1968. The electrical resistivity of rocks in the upper portion of the earth's crust varies with:

- 1. Water content. Natural waters are much more conductive than most rock-forming minerals.
- 2. Salinity. Natural waters are conductive in proportion to the concentration of ionized salts in the water.
- 3. Temperature. A rock at a depth of 1 km can be twice as conductive as the same rock at the surface because water conductivity increases with temperature.
- 4. Clays and conductive minerals. Clays can augment the ionic conduction of pore water. Electronic conduction in sulfide and oxide minerals can dominate if such minerals are sufficiently abundant.
- 5. Geologic strike of the formation. Many sedimentary and metamorphic rocks are <u>anisotropic</u>; they have a lower resistivity along the bedding plane than perpendicular to it.

Figure 5.2 Range of resistivity values of pure and natural waters. (Data sources: pure water, Dorsey, 1940; rainfall, Sarma and Rao, 1972; Great Lakes, Doherty, 1963; NaCl, Schlumberger, 1972; all other information, Freeze and Cherry, 1979)

Archie's equation (1)

- R_0 Resistivity of fully water-
saturated sample R_w Resistivity of water
- *F* Formation factor > 1
- *a* Tortuosity coefficient ≈ 1
- *m* Cementation exponent ≈ 2

Constant resistivity

Constant porosity

- *R*₀ Resistivity of fully water-saturated sample
- R_{w} Resistivity of water
- R_t Resistivity of sample

- S_{w} Water saturation of sample
- F Formation factor > 1
- *a* Tortuosity coefficient ≈ 1
- *m* Cementation exponent ≈ 2
- *n* Saturation exponent ≈ 2

Archie's equation

$$S_w = \left[\frac{a R_w}{\phi^m R_t}\right]^{1/n}$$

$$R_0 = \frac{a R_w}{\phi^m} \qquad R_t = \frac{R_0}{(S_w)^n}$$

- R_{w} Resistivity of water
- R_t Resistivity of sample

- S_w Water saturation of sample
- F Formation factor > 1
- *a* Tortuosity coefficient ≈ 1
- *m* Cementation exponent ≈ 2
- *n* Saturation exponent ≈ 2

Needed for evaluation

$$S_w = \left[\frac{a R_w}{\phi^m R_t}\right]^{1/n}$$

- Porosity and "true" formation resistivity (from downhole logs)
- Formation water resistivity (from local pore water salinity and temperature)
- Coefficients *a*, *m*, and *n*

Fig. 1-1—The first log: points plotted on graph paper by Henri Doll.

Fig. 7-13—Schematic of the Dual Laterolog.

$$V_P = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}} \quad V_S = \sqrt{\frac{\mu}{\rho}}$$

Bulk modulus *K* relates compressional stress and strain

Shear modulus μ relates shear stress and strain

MICROSTRUCTURAL PARAMETERS OF A POROUS MEDIUM		
	Porous Medium without Fluid	d Porous Medium with Fluid
Bulk Modulus	$K = K_s \left(1 - \beta \frac{\phi}{A} \right)$	$K_{u} = K + \frac{K_{f} \left(1 - \frac{K}{K_{s}}\right)^{2}}{\phi + \left(1 - \frac{K}{K_{s}} - \phi\right) \frac{K_{f}}{K_{s}}}$
Shear Modulus Density	$\mu = \mu_s \left(1 - \beta' \frac{\phi}{A} \right)$ $\rho = \rho_s (1 - \phi)$	$\mu_u = \mu$ $\rho' = \rho_s(1 - \phi) + \rho_f \phi$
P = Wave	$V_p = \left(\frac{K + (4/3)\mu}{\rho}\right)^{1/2}$	$V_p = \left(\frac{K_u + (4/3)\mu}{\rho'}\right)^{1/2}$

Table VII.4. BASIC RELATIONS BETWEEN ACOUSTIC FLASTIC AND

 $V_s = \left(\frac{\mu}{\alpha'}\right)^{1/2}$ $V_s = \left(\frac{\mu}{c}\right)^{1/2}$ S-Wave $K_{\rm s}, \mu_{\rm s}$ Elastic moduli of the rock grains K_f Bulk modulus of fluid ρ_s, ρ_f Rock grain and fluid densities A Pore shape aspect ratio ≤ 1 $\beta, \beta' \approx 1$

Kleinberg & Dai, 2005

Figure 11a. Well log measurements of compressional wave speed [Reference 2] compared to the predictions of four growth habit models.

Plate 2. Summary of results from Plate 1 and Figures 5 and 7, linking the sonic logging waveforms and the bulk modulus to the methane saturation estimates of free gas and gas hydrate (see text). Methane saturation from cementation theory for hydrates uniformly deposited on the grains (blue line), free gas concentration below the GHSZ (red fill), and hydrate concentration between the BSR and the BGHSZ assuming that 1% of the pore space is occupied by free gas (purple line). The green line gives the result of the cementation theory calculated from density and porosity data measured on cores. Circles are PCS results. Bulk modulus K (solid black line) and the Gassmann/Hamilton model (dotted line) are also shown. Gas hydrate is present where K is significantly higher than this model, while free gas is indicated by lower values of K.

Nuclear magnetic resonance

□*Precessing protons. Hydrogen nuclei*—*protons*—*behave like spinning bar magnets.* Once disturbed from equilibrium, they precess about the static magnetic field (left) in the same way that a child's spinning top precesses in the Earth's gravitational field (right).

Grain surface relaxation. Precessing protons move about pore space colliding with other protons and with grain surfaces *(left)*. Every time a proton collides with a grain surface there is a possibility of a relaxation interaction occurring. Grain surface relaxation is the most important process affecting T_1 and T_2 relaxation times. Experimenters have shown that when the probability of colliding with a grain surface is high—small pores *(center)*—relaxation is rapid and when the probability of colliding with a grain surface is low—large pores *(right)*—relaxation is slower.

□Signal amplitude processed to give T₂ distribution. The CMR tool measures decaying NMR signal amplitude (top), which is the sum of all the decaying T_2 signals generated by hydrogen protons in the measurement volume. Separating out ranges of T_2 values by a mathematical inversion process produces the T₂ distribution (bottom). The curve represents the distribution of pore sizes, and the area under the curve is CMR porosity. Interpretation of pore size distribution and logarithmic mean T_2 are used to calculate such parameters as permeability and free-fluid porosity.

NMR porosity = fluid porosity

FIG. 1 Hypothetical porosity log responses passing through a clean reservoir with porosity of 40 p.u. The reservoir is fully saturated with hydrate (top), with gas (middle) and with water (bottom) in this idealized example.

FIG. 3 Log responses in a hydrate zone. Yellow shading in Track 3 represents the difference between ϕ_{DMR} and ϕ_{TCMR} , which is approximately the volume of gas hydrate. Track 4 shows the water saturations computed using the DMR and resistivity techniques. Spikes in DMR porosity, track 3, and in the differences between DMR and resistivity estimates of water saturation, track 4, are strongly correlated with borehole washouts, shown as blue shading in track 1.

Murray et al., 2000

Pore habit of gas hydrates

A How hydrate is distributed in sediments. A formation can contain (left to right) hydrate as disseminated cement, nodules, veins and massive layers.

Collett et al., 2000

NGHP-1 10B-08Y X-Ray Rotations Core Pressure 150bar

Harmonic mean

Cyclostratigraphy

Herbert (2001)

Figure 2. Data for the interval 18–22 Ma. Reading from the top: insolation target; downhole spectral gamma ray log for ODP Hole 926B; magnetic susceptibility (volume-normalized SI) for Holes 925A, 926C, 926B, 928B and 929A. Age control points are marked by crosses; peaks in magnetic susceptibility are tied to minima in insolation. Sedimentation rates for Holes 925A, 926B, 928B and 929A and for the 926B downhole log are plotted below the data for these holes (scale m Ma^{-1} on right-hand axis).

Shackleton et al., 1999

Mesozoic and older: match periodicities in "floating" time scales

Fig. 3 a, Detail of carbonate power spectrum, showing peaks at: A, 90 cm (225 kyr); B, 53 cm (108 kyr); C, 48 cm (98 kyr); and D, 36 cm (73 kyr). b, Detail of transmission power spectrum, showing peaks at: E, 171 cm (347 kyr); F, 57 cm (116 kyr); and D (as in a). In a and b, higher-frequency peaks, probably harmonics of the \sim 100-kyr cycle, are not labelled. c, d, Lower-resolution power spectrum of carbonate (c) and transmission (d) curves plotted as In variance. 90% confidence interval and bandwidth (vertical and horizontal error bars) calculated following ref. 60.

Herbert & Fischer, 1986

Figure 5. Plot of the temporal resolution of several logging tools as a function of sedimentation rate. Temporal resolution was calculated as vertical aperture/sedimentation rate. Minimum sedimentation rates required to resolve 100 k.y., 41 k.y., and 23–19 k.y. in time are shown as shaded columns. Note that these sedimentation rates are only sufficient to resolve a time interval (Δt) equivalent to 100 k.y., 41 k.y., and 20 k.y.

is shown in Figure 15.

Figure 9. Comparison of data from three wireline resistivity tools: shallow and deep resistivity and the averaged FMS record that show cycles at a 41,000-year orbital period and below in the comparative power spectra [after *deMenocal and King*, 1995]. The resistivity logs have been converted to age, and the averaged FMS data are plotted on relative scale over a 7-m interval. The fine vertical resolution of the FMS data allows observation of periods as short as 6000 years.